Imaging oxygen consumption in forepaw somatosensory stimulation in rats under isoflurane anesthesia.

نویسندگان

  • Zhaohui M Liu
  • Karl F Schmidt
  • Kenneth M Sicard
  • Timothy Q Duong
چکیده

The cerebral metabolic rate of oxygen (CMRO2) was dynamically evaluated on a pixel-by-pixel basis in isoflurane-anesthetized and spontaneously breathing rats following graded electrical somatosensory forepaw stimulations (4, 6, and 8 mA). In contrast to alpha-chloralose, which is the most widely used anesthetic in forepaw-stimulation fMRI studies of rats under mechanical ventilation, isoflurane (1.1-1.2%) provided a stable anesthesia level over a prolonged period, without the need to adjust the ventilation volume/rate or sample blood gases. Combined cerebral blood flow signals (CBF) and blood oxygenation level-dependent (BOLD) fMRI signals were simultaneously measured with the use of a multislice continuous arterial spin labeling (CASL) technique (two-coil setup). CMRO2 was calculated using the biophysical BOLD model of Ogawa et al. (Proc Natl Acad Sci USA 1992;89:5951-5955). The stimulus-evoked BOLD percent changes at 4, 6, and 8 A were, respectively, 0.5% +/- 0.2%, 1.4% +/- 0.3%, and 2.0% +/- 0.3% (mean +/- SD, N = 6). The CBF percent changes were 23% +/- 6%, 58% +/- 9%, and 87% +/- 14%. The CMRO2 percent changes were 14% +/- 4%, 24% +/- 6%, and 43% +/- 11%. BOLD, CBF, and CMRO2 activations were localized to the forepaw somatosensory cortices without evidence of plateau for oxygen consumption, indicative of partial coupling of CBF and CMRO2. This study describes a useful forepaw-stimulation model for fMRI, and demonstrate that CMRO2 changes can be dynamically imaged on a pixel-by-pixel basis in a single setting with high spatiotemporal resolution.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Frequency-dependent neural activity, CBF, and BOLD fMRI to somatosensory stimuli in isoflurane-anesthetized rats

Inhalation anesthetics (e.g. isoflurane) are preferable for longitudinal fMRI experiments in the same animals. We previously implemented isoflurane anesthesia for rodent forepaw stimulation studies, and optimized the stimulus parameters with short stimuli (1-3-s long stimulation with ten electric pulses). These parameters, however, may not be applicable for long periods of stimulation because r...

متن کامل

Assessment of brain responses to innocuous and noxious electrical forepaw stimulation in mice using BOLD fMRI.

Functional magnetic resonance imaging (fMRI) using the blood oxygen level-dependent (BOLD) contrast was used to study sensory processing in the brain of isoflurane-anesthetized mice. The use of a cryogenic surface coil in a small animal 9.4T system provided the sensitivity required for detection and quantitative analysis of hemodynamic changes caused by neural activity in the mouse brain in res...

متن کامل

Effects of hypoxia, hyperoxia, and hypercapnia on baseline and stimulus-evoked BOLD, CBF, and CMRO2 in spontaneously breathing animals.

Functional magnetic resonance imaging (fMRI) was used to investigate the effects of inspired hypoxic, hyperoxic, and hypercapnic gases on baseline and stimulus-evoked changes in blood oxygenation level-dependent (BOLD) signals, cerebral blood flow (CBF), and the cerebral metabolic rate of oxygen (CMRO2) in spontaneously breathing rats under isoflurane anesthesia. Each animal was subjected to a ...

متن کامل

Investigating the role of transcallosal projections in mediating neuroplasticity following injury in a rat using fMRI

Introduction: FMRI studies in both human patients and animal models have demonstrated that lesions of the nervous system are followed by massive reorganization of cortical areas. Nevertheless, the underlying neuronal mechanisms that are involved in neuroplasticity and how they dictate the degree of recovery are not known. Currently there is no easy diagnostic clinical outcome predictor that wou...

متن کامل

A fully noninvasive and robust experimental protocol for longitudinal fMRI studies in the rat.

Functional magnetic resonance imaging (fMRI) is a unique tool to study brain activity and plasticity changes. Combination of blood-oxygen level-dependent (BOLD) fMRI and electrical forepaw stimulation has been used as a standard model to study the somatosensory pathway and brain rehabilitation in rats. The majority of fMRI studies have been performed in animals anesthetized with alpha-chloralos...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Magnetic resonance in medicine

دوره 52 2  شماره 

صفحات  -

تاریخ انتشار 2004